[딥러닝 / RNN] Sequence To Sequence (Seq2Seq Model)
Sequence To Sequence란 Sequence To Sequence 모델은 LSTM (또는 GRU) 기반 모델로 고정된 길이의 시퀀스를 입력받아, 입력 시퀀스에 알맞은 길이의 시퀀스를 출력해주는 모형으로 2014년 구글 et. al 에 의해 최초로 제안되었다. 기존 DNN 모델은 다양한 분야에서 좋은 성과를 거뒀지만, 이는 고정된 차원의 feature와 고정된 차원의 출력에 특화된 방법이다. 그렇기 때문에 입력과 출력의 길이가 매번 다른 데이터를 학습하고, 이를 응용하는 문제에는 적합하지 않다. DNN은 대표적으로 기계 번역에서 한계점을 갖는다. 기계 번역은 빈번하게 입력의 길이도 다르고, 그에 따른 출력의 길이도 다르다. 예를 들어, How are you? 를 번역하는 문제를 고려해보면 잘 지..